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Edge waves forced by short-wave groups 
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(Received 16 February 1993 and in revised form 29 June 1993) 

On the basis of the theory for infragravity waves induced by short-wave groups 
developed by Schaffer (1 993), three-dimensional infragravity waves are analysed. The 
theory relies on the linearized depth-integrated conservation equations for mass and 
momentum combined to give a second-order long-wave equation with forcing 
expressions in terms of the radiation stress. This forcing gives a dynamic set-up 
originating from oscillations of the break-point position and a dynamic set-down 
bound to the short-wave groups. For small angles of incidence leaky-mode solutions 
are found while trapped modes appear when the primary waves are sufficiently oblique. 
In the latter case resonant edge-wave excitation may occur. A semi-analytical steady- 
state solution for the infragravity motion is presented. The solution is restricted to 
periodicity along a plane beach connected to a shelf and valid only for small primary- 
wave modulations. 

1. Introduction 
It has been widely discussed in the literature whether leaky modes (as opposed to 

trapped modes, see e.g. Munk, Snodgrass & Carrier 1956) constitute the main part of 
infragravity wave motion, or if this is primarily an edge wave phenomenon. 

Convincing field evidence for the presence of edge waves has been given by Huntley, 
Guza & Thornton (1981) and others. Using a complicated mathematical development 
Gallagher (1971) presented a theoretical model for edge-wave generation by different 
spectral components. Using a number of crude assumptions he was able to calibrate the 
model to give an approximate fit to some observed infragravity spectra. 

In a lengthy WKB-expansion with multiple scales in time and offshore direction 
Foda & Mei (1981) treated the case of oblique incident short waves under the 
assumption that the long waves were of the same magnitude as the short waves. They 
obtained equations for the evolution as well as the interactions at different orders, and 
applied their derivations to the case of a closed coast, using empirical relations for the 
breaking of the short waves. 

In Schaffer (1993, hereafter referred to as I) a mathematical model was formulated 
using the conservation equations for mass and momentum, which were previously used 
by for example Symonds, Huntley & Bowen (1982) and Mei & Benmoussa (1984). An 
essential feature was the special modelling of the forcing short-wave groups accounting 
for a time-varying break-point position in addition to the ordinary wave-group 
forcing. Solutions were only presented for strictly cross-shore motion whereas the 
present paper is concerned with obliquely incident wave groups. 

The governing equations are given in $2 and a semi-analytical steady-state solution 
for the infragravity wave motion is developed in $3. Examples of the resulting surface 
elevation, the horizontal components of the infragravity particle velocity, and the mean 
infragravity-wave energy flux are presented in $4, where the effect of varying the input 
parameters is also analysed, focusing on the mechanism of edge-wave trapping. 
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2. Governing equations 
The development of the governing equations is given in detail in I and we shall repeat 

them here with just a few comments. For a one-dimensional depth h(x) the long-wave 
equation (2.9)’t reads in Cartesian coordinates (x ,  y )  (neglecting bed friction) 

where cis the slowly varying mean water surface, p is density, and g is acceleration due 
to gravity. Further Sij is the radiation stress given by (2.14)’: 

where 6, is the Kronecker delta and 

1 cos2a +sin201 
+sin2a sin2 a ’ (3) 

a being the local angle of incidence. A is a slowly varying complex amplitude describing 
the modulation of the short waves, and cg and c are the group velocity and phase 
velocity of the short waves, respectively. 

We only consider the case of two short-wave trains of amplitudes a and Sa, 6 4 1 and 
slightly different angular frequencies for which the mean value is w, and the difference 
is w .  

As these modulated waves approach the shore, the break-point position changes in 
time and possibly part of the modulation persists after initial breaking has occurred. 
A detailed discussion in I of these phenomena led to the following expression for the 
modulated short-wave amplitude : 

(4) 
7; h2( 1 + (1 - K )  26 COS 26’), X < Xb(t) 

x 2 Xb(t), IAI2 = { a  ( 1 + 26cos 269, 

see (4.3)’. Here yo is the ratio of the regular-wave breaker amplitude to breaker depth, 
xb(t)  is the instantaneous break-point position, 6’ is defined below, and K is a parameter 
close to unity introduced in I to model partial transmission of wave grouping into the 
surface zone. For K = 0 the model reduces to one with a fixed break-point position and 
a full transmission of wave grouping. A more realistic value is K = 1 which gives the 
special case where all the modulation of the incident groups is ‘used up’ in producing 
oscillations in the break-point position and no modulations penetrate to the surf 
zone. In I it was concluded that K is probably around 1 . 1 .  This is close to unity and 
hence the canonical case of K = 1 is used throughout the present paper. 

We shall only consider a plane sloping beach h = h,x connected to a shelf h = h, 
outside the break point. Figure 1 (figure 3 in I) shows the bottom topography and a 
schematic representation of the primary waves in the two cases of K = 0 and 1.  The 
figure also defines region I as the surf zone, region I1 as the rest of the slope, and region 
111 as the shelf. In the case of an oscillating break-point position a region B overlapping 
part of regions I and I1 is defined as the zone where initial breaking occurs. 

Defining a modified time t’ given by 

ot’ = wt+K,y ( 5 )  
t The superscript I refers to an equation in Schaffer (1993). 
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FIGURE 1. Sketch of bottom topography and two examples of short-wave modelling with 
associated definitions of the regions I, 11, B, and 111. From Schaffer (1993). 

(2.28)’ and (2.35)’ yield 
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Here K, and K2/ are the components of the short-wave difference wavenumber, (2.22)’ 
and (2.23)’, which by (2.35)’ may be written 

where c, and cgo are the phase and group velocity for the mean angular frequency w, 
on a reference depth ha. Furthermore ( -k , ,  - k y )  are the components of the mean 
wavenumber vector, where the minus is inferred to obtain positive values of k,  and k,  
(see figure 2 in I). K, and K, were obtained from the kinematics of the two primary 
wave trains constituting the wave groups. Equivalent results were found by Mei & 
Benmoussa (1984) using the conservation equation of energy. Slight differences 
between the results are due to their use of a wavenumber perturbation while a 
frequency perturbation is used in the present approach. 

The break point is found as the point where the two expressions for IAl in (4) match. 
This results in an implicit expression for xb(t’) which may be solved to get 

‘b 
Xb(t’)  = -(l +pUK&coswt’), 

YO h, 
(9) 

see (2.46)’. Here the subscript b refers to the break point and an overbar denotes the 
time mean over a group period. The factor p is close to unity, and it appears owing to 
the short-wave shoaling and refraction within the limits of the varying break-point 
position. The interested reader is referred to the derivation in I, see (2.38)’. 

With the shelf depth as reference, shoaling and refraction of the primary waves yields 

where cgz is the cross-shore component of the group velocity, see (2.30)’. 
Clearly the model described by (1)-(10) only applies to an idealized situation which 

is more likely to appear in a laboratory experiment than in nature. Furthermore, all 
expressions are given to the lowest order of accuracy and wave breaking is represented 
by the simple parametric formulation in (4). Altogether this makes the model more 
suitable for obtaining a basic understanding of the mechanisms behind the phenomena 
than for field applications. 

3. Theoretical infragravity-wave solution 
In this section we generalize the results of I (994.1 and 4.2) so as to account for an 

oblique incidence of the short-wave groups. The mathematical development in the 
region of initial short-wave breaking is different from but consistent with the two- 
dimensional model, which appears as a special case of the present findings. 

Since the oblique short-wave incidence results in a radiation stress which has a 
variation in the longshore direction, the short-wave forcing will result in three- 
dimensional infragravity waves. However, for the one-dimensional topography 
considered this forcing is periodic alongshore and the longshore variation can be 
treated just as the periodic time-variation was treated in I. 
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3.1. General solution 
Restricting ourselves to study only infragravity wave phenomena that are periodic in 
time as well as in the alongshore direction, we introduce the Fourier expansion of the 
elevation of mean water surface c: 

= C “ 1  (tm einWt’ + *), 
n=o 

where * denotes the complex conjugate of the preceding term. Here t’ is time modified 
to include the alongshore periodic variation, see (5) .  In order to avoid getting three 
different expansions for the components of the radiation stress we define a tensor sij(x) 
by 

SJX, t’) = s&) IA(x, t’)12 (12) 

and expand only the part that has a variation with the modified time: 

(AI2 = C “ 1  3(bn einWt’ + *). 
n=n 

Now (1) transforms into the ordinary differential equations 

where 

The case n = 0 determines the stationary set-down or set-up, and it will not be pursued 
further. For n 3 1 (14) governs the infragravity-wave motion which we shall 
concentrate on in the following. 

By the method of variation of parameters the solution to (14) may be expressed as 

(16) 

where [:) and 6:) are linearly independent homogeneous solutions (free waves), W, is 
their Wronskian, and a, and /3, are arbitrary complex constants. Any lower limit of 
integration xL in (16) can be chosen. 

On the slope we have h = hxx, and choosing a real representation the free-wave 
solutions (homogeneous solutions) to (14) are given by the confluent hypergeometric 
functions of the first and second kind7 multiplied by an exponential function (n = 1, 

where 

The parameter a is non-dimensional and should not be confused with the dimensional 
unmodulated primary-wave amplitude in (10). 

Note that for -a  = 0, 1,2, . . . , A4 (a, 1, nz’) reduces to the Laguerre polynomial of 

T Usually the latter is denoted U(a, 1, z’). The subscript m refers to modifications necessary in order 
to obtain a solution that is defined even when a is a negative integer or zero, see the Appendix. 
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order -a, L_,(nz’), and $:) reduces to the shallow-water edge-wave solution, see 
Eckart (1951), or Schaffer & Jonsson (1992). The Wronskian of the functions in (17)t 
with respect to x is (due to our definition of z’ in (18)) 

1 d  1 W = ---(nz’) = - 
nz’dx x 

and we get 

On the shelf (h  = h,) the solution to (14) is easily verified to be (for h =k 0) 

~ ~ 1 1 )  = acll) exp (nhi K, x) +/I!’’) exp ( - nht K, x) 

6, s F ~ I )  cos2 a, + 2s!$I) sin a, cos a, + syil) sin2 01, 
, n = l  

gh, - c;, 

+ k n = 2,3,4 ,..., 

where h iz 1 - 02/(ghn K2,) (22) 

and a, is the angle of incidence on the shelf. The sign of h determines whether the free- 
wave solutions are progressive or standing waves in the cross-shore direction. In (21) 
the particular solution (last term) is the bound, long wave found by Longuet-Higgins 
& Stewart (1962, 1964), now expressed in a coordinate system rotated an angle an 
relative to the direction of group propagation. 

The assumption of wave groups made up from only two wave components reduces 
(13) to 

(IA12)(”) = by)  ++(b$”) eiWt‘ + *), J = I, 11,111, (23) 

where J refers to three regions: Region I is the surf zone, region I1 is the rest of the 
slope, and region I11 is the shelf, see figure 1. 

Further b, and b, are given by 

y;h2(1 -~)26exp 

(2 5) 
a22Sexp (i K, dx) , x 2 xb(t’). 

and 

3.2. The efect of oscillations of the break-point position 
The implicit time-dependence hidden in the variable break-point position is essential. 
The mathematical consequence of this time variation is that within the spatial limits of 
the break-point position, which we shall refer to as region B, (24) and (25) are not the 
Fourier coefficients of IAI2. However, these can be found along the lines of I (54.2.2) 
using the modified time t‘ in place of t ,  see Schaffer (1990) for details. 

t According to the differential equation (14) the Wronskian should be cc 1/x (for h cc x) and 
numerical computations of (1 7) and their derivatives showed that the factor of proportionality was 
unity (as used in (19)) for our choice of Urn (based on do = 2 ,  see the Appendix). 
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Returning to the expression for the elevation (16) we can write a particular solution 
in region B as 

where Q, c a d x  
xu Wn 

and the shoreward limit of the variable break-point position (see figure 1) is taken as 
the lower limit of integration. Here integration by parts was applied and n = 1,2,3, . . . 
is understood. Now all variables in (26) except qn are slowly varying in region B, and 
within errors of O(6) (giving errors on tkB) of O(P) which we neglect) they can be 
approximated by their values at the mean break-point position. This way (26) yields 

From (15) we have (to the sufficient accuracy, i.e. neglecting terms of O(6)) 

where h, is the depth at the mean break-point position. Now biB) is O(6) and it follows 
that the last two terms are O(6) and O(a2), respectively. Further dbkB)/dx is O(S0) except 
at the endpoint x, and we have 

= O(60). (30) 

This means that we only need to retain the contribution from the upper variable 
endpoint of the first term in (29), and we get 

l U q , d x  = -- 1 d(bkB)sxx) 
pgh, dx ' 

neglecting terms of O(6). Using this in (28) yields 
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neglecting terms of O(S2). In terms of b:) at x = . f b  the 'jump' in the elevation over 
region B can finally be written 

[5,]' = 0, ~1 = 2,3,4, ..., 

where we have replaced the endpoints of region B with xb, consistent with earlier 
approximations. 

The 'jump' condition in the formulation of (33) is consistent with the one obtained 
by a different mathematical development in the two-dimensional case (cf. (4.43)') 
although it involves neither p nor the derivatives of the radiation stress. The two forms 
are seen to be equivalent if 

which to the leading order in 6 may be written 

or 

and since a = yo h at x = xb this may be written as 

p ---+1 = 1, x = X ,  [ ::; ] 

(35) 

(36) 

(37) 

which is satisfied, since by definition p = 1/(1+ v) where v = - [ (x/a) (d~/dx)],=,~, see 
(2.38)', q.e.d. 

Were now turn to the gradient of the surface elevation to investigate whether the 
'kink' in the elevation over region B is also the same as in the two-dimensional case. 
Along the lines of derivations in I (see Schaffer 1990 for details) this leads us to the 
expressions 

r&]:=O, n = 2 , 3 , 4  ,..., 

where b, is now formally evaluated in the limits of regions I and I1 as valid for a 
vanishing extent of region B. 

As in the two-dimensional case there is a kink in the elevation of the fundamental, 
but no kink in the higher harmonics. Since the forcing outside region B is also zero for 
the higher harmonics we can conclude that 5, E 0 for n = 2,3,4, . . . to the lowest order 
of approximation in 6. Comparing this result with the matching conditions of g2.1.3 
in I, we see that (38) satisfies (2.13)'. 

The important conclusion of this subsection is that we can incorporate the effect of 
oscillations of the break-point position in the overall solution for the surface elevation 
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by simply ignoring the presence of region B and replacing the continuity condition 
(2.12)' by the discontinuity condition (33) applying also the kink condition (38). This 
is analogous to the two-dimensional case of normal short-wave incidence. 

Physically the importance of time-varying break point is due to oscillations in the 
starting point of the set-up, affecting the whole surf zone and not only region B. Had 
bhB) only been a weighted mean of b:) and bg'), it would have been of no significance. 

3.3. Determination of integration constants 

As in the case of normal incidence there are two complex constants in three regions to 
be determined, and we have two boundary conditions and four matching conditions 
providing the necessary six complex equations. 

For h < 0 the homogeneous solutions in region I11 (see (21)) are progressive free 
long waves, and the seaward boundary condition (cf. 52.1.2 in I) is that of no incoming 
free long waves, which requires 

On the other hand, for h > 0 these solutions are standing free long waves (in the 
offshore direction), and we only retain the evanescent mode. This also leads to (39). 
For h = 0 the homogeneous solution to (14) in region I11 can be written as 
a!"') (h, x )  + /3!"'), and its represents free long waves travelling parallel to the shoreline. 
As for h > 0 the component with seaward growth must be ruled out, and it follows that 
(39) can be used for any A. Furthermore, applying (39) to (21), the case of h = 0 need 
no longer be excluded from (21). 

In region I we take xI = 0 as the lower limit of integration in (16) by which the 
particular part of the solution vanishes at the shoreline. Now the limited-amplitude 
reflection condition is 

p 1 )  = 0. (39) 

/$I) = 0 (40) 

since ,$) is regular at the shoreline, while f;?) is singular there, cf. (17). 
The matching conditions at Zb are given by (33) and (38). At xo where the slope meets 

the shelf, conditions of continuity in surface elevation and depth-integrated velocity are 
applied, see (2.12)' and (2.13)'. 

3.4. Horizontal particle velocity and mean energy JEux 
As for the case of normally incident wave groups the Fourier expansion of the 
linearized horizontal long-wave particle-velocity components 

" 1  
Ui = C -(U,,ieinwt'+*), i = x,y 

together with the equation of conservation of momentum yields (for n $. 07) 

n=o 2 

Now U, = 0 for n = 2,3,4, . . . , since for these n-values both f;, and b, vanish and thus 
the time-dependent horizontal velocity is described by Ul,  alone. 

The expression for the mean energy flux Wi of the long-wave motion is similar to the 

t Note that n = 0 corresponds to the steady currents. However, the longshore current Uo,a! cannot 
be determined by conservation of momentum without adding a frictional term, since otherwise there 
is nothing to balance the shore-normal gradient of the S,,-term. 



134 H.  A .  Schaffer 

one for the cross-shore case as well, see (4.50)'. We get, excluding the energy flux of the 
steady current, 

(see (4.50)I for details), where * as before denotes the complex conjugate of the actual 
term when used as a superscript. 

3.5. Important parameters 
The following non-dimensional forms (marked with )̂ are chosen : 

where W,, is the short-wave energy flux before breaking. 

following six parameters : 
With these non-dimensional forms the solution can be reduced to depend on the 

h x W , / W ,  L o ,  4, K ,  Yo, ao. (45) 

Here h,w,/W is the small bottom slope scaled with the small ratio of the timescale of 
the primary waves and the timescale of the infragravity waves, Lo and do are the non- 
dimensional depth and unmodulated primary-wave amplitude, respectively, both at 
the shelf and both scaled by k ,  = o,2/g, K and yo are the parameters used in the 
modelling of primary-wave breaklng, and a. is the common angle of incidence over the 
shelf for the two short-wave trains constituting the groups. 

Although we generally take (45) as the input for the model, three other parameters 
are very important for the solution. These are -a,  zk, and A, and they are all functions 
of the parameters in (45) in the sense that their values can be found without solving the 
infragravity-wave equations. The significance of the parameter -a can be assessed by 
noting that, in the absence of the shelf, -a = 0,1,2, ... would identify an edge-wave 
mode. The parameter zi is the dimensionless distance from the coastline to the shelf. 

From (18) for n = 1 we get 

(46) 
1 

-a = L( (Ax % / W )  ~ o ( c o l c g o )  sin a0 

and 
, 2L, ko(co/cgo) sin a, 

zo = 
hx W S I W  

(47) 

also using (8). From (22) we get 

(48) 

the sign of which determines whether the long-wave modes are trapped or leaky. Only 
for the trapped modes ( A  > 0) is resonant-wave forcing possible. These three 
parameters are related by 

1 
A = l - ,  

h o ( ~ o ( ~ o / ~ g o )  sin a,>z ' 

, 2(1-2a) 
zo = 

l - h  * 
(49) 



Edge waves forced by short-wave groups 135 

The angle of incidence corresponding to the turning point h = 0 shall be denoted a,,. 
This angle is solely a function of h,, and from (48) we get 

(50) 
1 

sina,, = 
hi lo co/cgo . 

Only in the limit where the shelf depth corresponds to shallow water for the primary 
waves do we have sina,, = 1 and no trapping is possible. 

In terms of a, and a,, we can write h as 

Finally it is instructive to introduce a non-dimensional caustic depth he defined as 

which appears from (48) with h = 0. The dimensional form of h, is he = 02/(gK2,) (see 
(22)) and it comes from regarding the long-wave from a geometrical optics point of 
view, see Schaffer & Jonsson (1992). For h, > he a caustic exists, and we have trapped 
modes, while for h, < he there is no trapping, and he represents the non-existent depth 
at which the caustic would have been for the given long-wave frequency and long-wave 
alongshore wavenumber in the absence of the shelf. In terms of h, and hc, h takes the 
form " "  

h = 1 - h,/h,. (53) 

Note that for h < 0, - arctan (1 - ( -A) ; )  gives the angle of reflection for the seaward 
emitted free long wave, cf. the phase in the second term of the right-hand side of (21) 
for n = 1. 

For normally incident short waves a ' reflection coefficient' R was defined as the ratio 
between the free long wave propagating seawards over the shelf (region 111) and the 
incident bound long wave, see (4.53)'. 

When trapping of the long waves occurs (i.e. h > 0) there is no emission of 
progressive free long waves in region 111, and one could argue that the reflection 
coefficient should then be zero. However, we might as well use the information 
provided by the following definition of R :  

gh, - 

For leaky modes (i.e. h < 0, cf. (22)) this definition is consistent with the definition 
(4.53)I, and it gives the ratio between the respective amplitudes of the free long waves 
propagating seawards in region I11 and the incoming bound long wave. For trapped 
modes R becomes the ratio between the respective amplitudes of the free evanescent 
mode measured at i = 2, and the incoming bound long wave. 

Note that for trapped modes R is very small for large A,, as opposed to the case of 
leaky modes, cf. 54.2.5 in I. 
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FIGURE 2. Dimensionless infragravity wave: -, envelope f &I, and elevations ---, Re&} at 
t = 0, and for the input parameters h,w,/w = 0.25, ha = 1, 
8, = 0.1, K = 1, yo = 0.4, and a0 = 15", which yield R = 1.8. 

Im{fl} at t = T/4 ,  versus 

4. Sample results for the infragravity wave 
4.1. Surface elevation 

As in the shore-normal case the solution ( 1  6 )  for El was integrated numerically, and the 
integration constants were found by numerical solution of the six linear equations. The 
parameters used as input for the model are given in (45), and in the example of figure 
1 we have used a - 15", h,u,/w = 0.25, Lo = 1, 8, = 0.1, K = 1, and yo  = 0.4. The 
value of K = 1, specifies that all wave grouping is used in producing oscillations in the 
break-point position so that no modulations are transmitted into the surf zone. Figure 
2 shows the envelope of the infragravity wayes (not to be confusedAwith the enyelope 
of the short waves), which is given by +16,1. Furthermore, Re(,&} and Im{[,} are 
shown. These correspond to the surface elevation at times t = 0 and t = - T/4, 
respectively, where T = 2 n / u  is the infragravity-wave period, which is identical with 
the group period of the short waves. The figures shows the whole sloping region but 
not the shelf (this also applies to figures 3-7). Note the jump in the elevation at the 
mean break-point position. This represents the significant forcing that takes place 
within the limits of the variable break-point position. Figure 2 is almost identical with 
the equivalent solution for normal incidence. This indicates that the oblique incidence 
has virtually no effect, at least as long as a, is small. For Lo = 1 the critical angle of 
incidence is acr = 36.86", i.e. no trapping for a, = 15". Leaving all other input 
parameters unchanged (h, u,/w = 0.25, h, = 1, ci, = 0.1, K = 1 ,  yo = 0.4), figure 3 (a, b) 
shows the solution for a. = 30" and a. = 45", respectively. Comparing figure 3(a) 
(ao = 30") with figure 2 (a, = 15") we see that the effect of the larger angle of incidence is 
surprisingly small. Even for a, = 45" (figure 3 b), for which we have long-wave trapping 
(since a, > a0), the solution appears much the same, at least inside the surf zone. 
Outside the surface zone though, there is a qualitative change in that the 'almost-node' 

0: 

in figures 2 and 3(a) disintegrates as expected. In figure 3(b) the caustic depth is 
Ac = 0.72. 
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FIGURE 3. As figure 2 but for (a)  a. = 30°, which yields R = 2.9, and (b)  a,, = 45", 
which yields R = 1.7. 

4.2. Mean energy j u x  and horizontal particle velocity 
Figure 4 shows the components of the mean long-wave energy flux % versus for the 
solution shown in figure 2 (a, = 15'). The cross-shore component closely resembles 
that of normal incidence (figure 4.126 in Schaffer 1990), although no direct quantitative 
comparison can be made because of the different choice of reference depth. The 
vanishing cross-shore energy flux in the surf zone is a consequence of using K = 1, 
which prohibits primary-wave modulations and thereby infragravity-wave forcing in 
the surface zone. Thus in the surface zone the solution represents a standing wave in 
the cross-shore direction. As for the corresponding surface elevation the jump in the 
energy flux is a consequence of the forcing mechanisms due to the oscillations in the 
break-point position. The longshore component is negative almost everywhere, 
indicating a flux of energy following the short waves. Even for this rather small angle 
of incidence the energy flux is of the same order of magnitude in the two directions. 

Figure 5(a,  b) shows % corresponding to the elevations shown in figure 4(a, b), i.e. 
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0 

FIGURE 4. Mean infragravity-wave energy-flux components: -, Wz and ---, Wv, versus h for 
the input parameters ~ , w , / w  = 0.25, h, = 1, 6, = 0.1, K = 1, yo = 0.4, and a, = 15". 

for a, = 30" and 45", respectively. The leaky-mode case of a, = 30" (figure 5a)  appears 
somewhat the same as for a. = 15" (figure 4), although the seaward emission of energy 
is about twice as much for the larger a,-value. The longshore energy flux i s  
approximately tripled when changing from a, = 15" to 30". For a. = 45" (figure 5b) W, 
is negative at h = ho indicating a shoreward flux of energy. This is in accordance with 
the fact that in the trapped-mode case there is no seaward emission of free long waves, 
while the incident bound long wave still represents a shoreward energy flux. 

Figure 6 shows the amplitude of the components of the non-dimensional horizontal 
particle velocity IOJ = lUl,il/(8am w,) for the infragravity wave shown in figure 2. The 
cross-shore component resembles that of the normal-incidence case (figure 11 in I). The 
longshore component is rather small. 

Corresponding to the elevations in figure 3, figure 7 (a, b) shows Cl, for a, = 30" and 
45", respectively. The cross-shore component is still dominant inside the surface zone, 
while at h, 2 = A,, el, approximately equals o1, , for a, = 30", and for a. = 45" the 
longshore component takes the lead. 

4.3. The influence of varying input parameters 
In this subsection we analyse the effect of different input parameters on the solution as 
a whole. Important quantities describing the infragravity wave are the reflection 
coefficient R (note the special definition (54) of R), the infragravity-wave amplitude at 
the shoreline I[l(0)l/(8a,), and the amplitude of the free long wave lLJ/(8ao) measured 
at the edge of the shelf zone (h, 2 = h,). The variation of these quantities is now given 
for varying h,w,/w and a,, respectively. 

For 0.1 < h,u,/u < 1 the infragravity-wave solution was found using ho = 1, 
8, = 0.1, K = 1, yo = 0.4, and a. = 30". The resulting curves for R, l&(0)l/(8ao), and 
I[fIf1/(8ao) can be represented in many ways, and figure 8 (a, b) shows two of them. For 
comparison with figure !3(b) in I, figure 8(a)  shows the results as a function of 
x = (h, u,/w)-' hb, where hb = 0.273 for the given values of a. and 8,. In addition to the 
results from the infragravity-wave model, the parameter h, us/@ is also shown. Figure 
8(a)  is very similar to figure 13(b) in I for which the input parameters were the same 
except for the angle of incidence and the use of reference depth. Note that this gives 
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FIGURE 5. As figure 4 but for (a) a0 = 30", and (b) a0 = 45". 

a slight difference in x through &,, and the figures are not quantitatively comparable. 
The increasing trend in R with decreasing h, w,/w is a consequence of the smaller slope 
allowing for more time (or distance) to build-up incident low-frequency energy than 
the steeper slope as discussed in connection with figure 8 in I. 

The oscillations in R can be explained as a result of a change in the phase difference 
between two essentially-free long waves. Both of these waves are generated in the 
region of initial breaking, but one is subject to direct seaward emission while the other 
is emitted after reflection from the shoreline. The parameter x introduced by Symonds 
et al. (1982) is a measure of this relative phase, see Schaffer (1990) for a detailed 
discussion. Figure 8 (a)  also exhibits increasing infragravity-wave activity (see for 
example ~&(0)~/(&z,J) with increasing frequency, while field observations typically show 
the opposite trend. However, there is no contradiction, since for natural waves the 
concentration of primary-wave energy close to the peak frequency emphasizes the low- 
frequency forcing and hence the low-frequency infragravity-wave response. Figure 8 (b) 
shows the same results as figure 8 (a)  but now as a function of -a, (46). This parameter 
is relevant when the short-wave incidence is oblique because special values of -a  
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0 

FIGURE 6. Amplitude of horizontal infragravity-wave particle-velocity components: -, el,z and 
___ , Ul, zI, versus h for the input parameters h, ws/w = 0.25, h, = 1, 2, = 0.1, K = 1, yo = 0.4, and 
a, = 15". 

satisfy the dispersion relation for free edge waves resulting in resonant edge-wave 
excitation. As mentioned above, the critical angle of incidence is a,, = 36.86" for 
h, = 1. This means that a, = 30" is really not very far from giving trapped modes. On the 
other hand the (non-existent) caustic depth is h, = 1.44 which compared with h, = 1 
gives the impression that trapping is not very close. A third measure of how far we are 
from getting trapped modes is the value of A, which for the given h, and cco is 

We now increase the angle of incidence to a, = 35", which is very close to 
a,, = 36.86". This yields h, = 1.09 and A = -0.094, and the results are shown in figure 
9(a) (again for ho = 1, 4, = 0.1, K = 1, and yo = 0.4). Now marked peaks appear in R, 
~,&(O)~/(CYa,), and I.&l/(CYa,) for -a  close to integer values. This is because we get close 
to the edge-wave dispersion curves, as will be shown below, and this near-resonance 
now dominates the importance of the relative phase mentioned above. 

Increasing the angle of incidence to a, = 45" means that a,, = 36.86' is well 
exceeded. Now h, = 0.72 and h = 0.280, and the results are shown in figure 9(b) (again 
for A, = 1, 8, = 0.1, K = 1, and yo = 0.4). The marked peaks have now turned into 
genuine singularities corresponding to resonant excitation of free edge waves. The fact 
that some of the peaks appear finite is only a consequence of the finite resolution of the 
abcissa. 

Bowen & Guza (1978) conducted laboratory experiments on the forcing of 
(primarily mode 1) edge waves, and figure 9(b) is in qualitative agreement with their 
measurements (their figure 9). However, a number of differences between their 
experiments and the present model prohibits a quantitative comparison. The most 
important of these differences is the limited longshore extent of their experimental set- 
up, which prevents the development of steady-state infragravity waves, thus giving 
long-wave amplitudes which are an order of magnitude smaller than predicted by the 
present steady-state theory. 

We now let a, run through the interval 1" d a, d 60", while h,u,/u = 0.25 is kept 
constant. Choosing a, as the abscissa figure 10 is obtained (again the other input 

h = -0.44. 
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FIGURE 7. As figure 6 but for (a) a. = 30°, and (b) a. = 45'. 

parameters were h, = I,&, = 0.1, K = 1, and yo = 0.4). Clearly two different a,-values 
are exceptional. One is a, = 53.1", which corresponds to the resonant forcing of edge 
waves of mode 1, and the other is a, = acr = 36.86", corresponding to the turning point 
from trapped to leaky modes. The peaks at a, = 53.1" only appear finite because the 
resolution of the abscissa is just 1". An exception is the range 36.0" < a, < 37.0°, where 
the equidistance is 10 times smaller (only 0. 1"). Contrary to the peaks at a, = 53. lo, the 
peaks at a, = aer = 36.86" do not correspond to a singular infragravity-wave solution. 
In fact at a, = aer where also h = 0 and 6, = h,, it appears that R and ~~f~/(&ao) have 
local finite maxima. This seems reasonable, since at this point they are measured right 
at the caustic depth. It is more surprising to see that l[l(0)I/(Sao) has a local minimum 
there. The author has not found an explanation for this. 

Schaffer & Jonsson (1 992) derived the shallow-water edge-wave dispersion relation 
for a plane slope with a shelf and illustrated the results as dispersion curves in the 
(- a, zk)-plane. Since both -a  (46), and z;, (47), can be uniquely derived from the input 
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FIGURE 8. Two different representations of some key results for the infragravity-wave solution for a 
range of different values of the scaled beach slope, 0.1 < ~ , o , / w  < 1.0: -, 'reflection coefficient' 
R ;  ---, shoreline infragravity-wave amplitude, l~l(0)l/(8u,); -.-.- , amplitude of the seaward 
progressing free long wave measured at the*edge of the slope, 1&l/(Sa0). In (a) the abscissa is a derived 
'relative phase' parameter x = ( ~ , w , / w ) - ~ &  which is important for normally incident groups. In (b) 
the abscissa is the derived parameter -a (see (1  8) and (48)) which is closely related to the edge-wave 
dispersion relation (figure 11) for the plane slope with a shelf (figure 1). the varied ~ , w , / w  (..;...) is 
shown in both graphs, and the other input parameters were kept constant at a0 = 30°, h, = 1 ,  
u, = 0.1, K = I ,  and yo = 0.4. 

parameters h, w s / w ,  a0, and 4, (i.e. without finding the infragravity-wave solution) 
every set of input parameters corresponds to a point in the ( -a,  zk)-plane. A variation 
of one of the input parameters thus gives a curve in the (-a, zh)-plane which we shall 
denote a parameter path. Figure 11 gives the parameter paths for figures 8, 9(a) ,  9(b), 
and 10, also including the edge-wave dispersion curves from Schaffer & Jonsson (1992). 
For zh --f co the influence of the shelf vanishes and the free edge-wave dispersion 
relation reduces to the classical result -a  = n, where n = 0,1,2, . . . is the edge-wave 
mode. Consider first the straight-line segments. These correspond to constant h-values, 
and their extensions all run through ( -a,  z;) = (-i,O), cf. (49). In the order of 
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FIGURE 9. As figure 8(b) except for the angle of incidence ao. In (a) a. = 35', close to the critical angle 
a,, = 36.86' where trapping occurs, and near-resonant amplification shows in the peaks near integer 
values of -a. In (b) a. = 45" exceeds aer and edge-wave resonance occurs. 

increasing slope (measured in the (- a, zk)-system) these lines are given by h = - 0.439, 
-0.094, and 0.280. For Lo = 1, these values further correspond to a, = 30°, 35", and 
45" as used in figures 8 (a, b), 9 (a), and 9 (b), respectively. 

In figure 11 the parameter path (dash-dot line) is not very close to the dispersion 
curves (solid line) and consequently the maxima (of e.g. R) corresponding to figure 8(b) 
show no correlation with near-integer values of -a 

The steeper line segment (dash-double-dot line) of figure 11 runs much closer to the 
dispersion curves, and at the -U-values where the distance is smallest marked peaks 
appear in the corresponding figure 9(a). Note that for the smaller -a-values the 
deviation from integer values in the dispersion curves of figure 11 (owing to the 
presence of the shelf) is also recognized in the lower peaks of figure 9(a).  

The steepest line segment (dashed line) of figure 11 runs right through the dispersion 
curves, and the corresponding singularities evolve in figure 9 (b). 



144 H.  A .  Schaffer 

FIGURE 10. Some key results for the infragravity-wave solution versus the angle of incidence, 
1 " Q ~ , ~ 6 0 " ~  ~ , 'reflection coefficient' R ;  ---, shoreline infragravity-wave amplitude, 
~~l(0)~/(~ao); -.-.-, amplitude of the seaward progressing free loqg wave measured at the edge of the 
slope, 1Efl/(SaO). The other input parameters were h, o s / w  = 0.25, h, = 1,6, = 0.1, K = 1, and yo = 0.4. 
Also the derived parameter -a  (......) is shown. Note the special behaviour at the critical angle of 
incidence acr = 36.86" and the edge-wave resonance at a, = 51.11". 
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FIGURE 11. Parameter paths corresponding to figure 8 (a, b) (- .-.-) for which (A, a,) = (-0.439, 30"), 
figure 9(a) (--. .) for which ( A ,  a,) = (-0.094,35"), figure 9(b) (---) for which (A, a,) = (0.280,45"), 
and figure 10 (......), for which h,o,/o = 0.25. The edge wave dispersion curves (-) valid for a 
plane slope connected with a shallow shelf are also shown, see Schaffer & Jonsson (1992). 

Finally we consider the curve segment (dotted line) of figure 11, corresponding to 
figure 10, which from (46) and (47) is seen to be a segment of a hyperbola with 
asymptotes given by zh = 0 and - a  = -;. Again the crossing of a dispersion curve 
results in a singularity, cf. the peak at a, = 53.1" in figure 10. Furthermore, the 
intersection between the hyperbola segment and the caustic for the dispersion curves 
(the common tangent to the curved ends of the dispersion curves, not shown in the 
figure) is reflected in the finite peak at a0 = acr = 36.86" in figure 10. At this point also 
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h = 0 and h", = 6,. The hyperbola segment could have been extended upwards by 
increasing a, to values higher than 60" (as taken from the limit in figure 9), but the limit 
would be a, = 90" corresponding to (-a,zh) = (0.70, 13.34), indicating that for the 
particular h, w,/w = 0.25 and h", = 1 .O the lowest edge-wave mode could not be excited. 
This would require a higher value of h,w,/w. 

Imagine R, ~&(O)~/(&Z,), and ~&~/(&z,,) computed for varying sets of (h, w s / w ,  a,). This 
would result in a surface, which could be depicted over the ( -a ,  zh)-plane. Figures 8 (b), 
9(a), 9(b) and 10 now represent four vertical sections of this surface, and the traces of 
these sections are the three line segments and the hyperbola segment of figure 11. 

5. Summary 
This work is a sequel to Schaffer (1993). That paper was concerned with the 

development of a mathematical model for the generation of infragravity waves over a 
one-dimensional topography by normally or obliquely incident groups of primary 
waves. Solutions for slightly modulated primary waves of normal incidence on a plane 
sloping beach were presented, with emphasis on the so-called dynamic set-down and 
set-up due to the incident bound long wave and to the oscillations of the break-point 
position, respectively. These phenomena are also relevant in the present paper which 
takes up the case of obliquely incident groups. Again the solution presented is 
restricted to small primary-wave modulation and a plane sloping beach. The new 
feature of the solution is the possibility of infragravity-wave trapping an edge-wave 
resonance. The occurrence of both these phenomena can be predicted from the input 
parameters without finding the infragravity-wave solution. Near-resonant edge-wave 
conditions are shown to result in amplification of the infragravity waves, as could be 
expected. A continuous variation of the angle of incidence shows that at the transition 
between trapped and leaky infragravity-wave modes, corresponding to a cut-of 
frequency, the solution shows a finite peak in the dimensionless infragravity-wave 
amplitude. This peak appears as a local maximum at the edge of the slope and as a local 
minimum at the shoreline, and the finite values indicate that no resonance occurs at the 
cut-off. 
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Appendix. Confluent hypergeometric functions 
The confluent hypergeometric equation, also called Kummer's equation, reads 

(see e.g. Abramowitz & Stegun 1972), where a and b are parameters. The two linear 
independent solutions are the Kummer functions (or confluent hypergeometric 
functions) the first and second kinds, M and U. 
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where (a), is Pochhammer’s symbol: 

r ( a  + n)  
r(4 

(a), = ~ = a(a+ 1)(a+2) ... (a+n- 1 )  

and 
Z1-b M(l+a-b,2-b,z’) 

Y = U(a, b, z’) = T( U )  r( 2 - b) 

b + O , + l , + 2  ,..., a=i=O,- l , -2  ,..., 

where I‘ is the Gamma function. However, we need solutions for b = 1 ,  since this 
corresponds to the long-wave equation (14). For integer values of b, 

U(a, b, z’) = U(a, n + 1 ,  z’) 

is defined (see Erdelyi 1953, equation (13), section 6.7, vol. 1 ) :  

a + 0 , - 1 , - 2  ,..., n = 0 , 1 , 2  ,..., 

where the last sum is to be omitted if n = 0, and + is the logarithmic derivative of the 
T-function (the Digamma function) 

The Kummer function of the first kind is easily evaluated as 

m 

M(a, b,z’) = c , P ,  
n=o 

where from (A 2) 

. co = 1.  a+n 
( n  + b)  (n + 1 )  ’ cn+l = 

This could also be found directly by inserting the series (A 7) in the differential 
equation (A 1 ) .  

The Kummer function of the second kind is more problematic, since we are 
particularly interested in the case b = 1 ,  for which U(a,b,z’) is not defined when 
a = -n ,  n = 0,  1 ,2, . . . , corresponding to free edge waves on an infinite slope. Thus we 
seek a solution to (A 1 )  that is linearly independent of M(a, b, z’), and which is defined 
for b = 1 even when a = - n .  Inspired by (A 5 )  we assume that a solution of the form 

Y = U,(a, b, z’) = In z’M(a, b, z’) + T(a, b, z’), (A 9) 

where 
m 

T(a, b,z’) = C d,zfn, 
n=o 
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can be expected. Inserting (A 9) into (A 1) it follows that T must satisfy the 
inhomogeneous equation 

Now (A 10) inserted in (A 11) yields 

(n+ 1 ) (b+~)d ,+ l - (~+~)d , - c ,+(b -1 )c ,+ l+2(~+ I )C,+~ = 0 (A 12) 

and (b-l)c,, = 0. (A 13) 

Thus it is only for b = 1 that we can require c, = 1 and get a non-trivial solution 
Y = M .  If b $: 1, we have c,, = 0, and the en-series sums up to Y = 0, after which 
the d,-series is simply T = M .  Assuming that b = 1 (which is the case we are interested 
in) yields 

(a + n) d, + c, -2(n + 1) c,+l 
(n + l)z dn+, = 

Since the c, are known from (A S), we can specify any do and the rest of the d, are given 
by (A 14). Thus Y = Urn(a, 1,z’) given by (A 9) and (A 10) provides a solution to 
(A l), which is linearly independent of M(a, 1, z’) and valid even for -a  = 0, 1,2, . . . . 

In the applications M(a, 1, z’) and U,(a, 1, z’) were calculated numerically. M was 
checked against standard tables of confluent hypergeometric functions, and Urn was 
checked indirectly through an evaluation of the Wronskian of ( M ,  Urn), invoking that 
according to the differential equation (A 1) we have (for b = 1) 

W(M,U,)ocexp [ - 1’ ~ iZ‘d.d] = 5. 
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